5.6. Run data drift and model quality checks in an Airflow pipeline [OPTIONAL CODE PRACTICE]

A code example walkthrough of automating data and model quality checks implemented with the Evidently Python library using Airflow.

Video 6. Run data drift and model quality checks in an Airflow pipeline [OPTIONAL CODE PRACTICE]arrow-up-right, by Emeli Dral

In this video, we show how to automate the data or model quality checks implemented with the Evidently Python library using Airflow.

Want to go straight to code? Here is the code examplearrow-up-right to follow along.

Outline: 00:00arrow-up-right Introduction 01:09arrow-up-right Install Airflow 02:47arrow-up-right Install dependencies 05:20arrow-up-right Rebuild the container and access Airflow UI 07:06arrow-up-right Start creating the DAG 10:00arrow-up-right Specify DAG parameters 12:48arrow-up-right Add functions and implement DAG 17:55arrow-up-right Implement load data function 19:21arrow-up-right Implement drift analysis function 21:32arrow-up-right Implement create report function 23:14arrow-up-right View DAG in Airflow 26:06arrow-up-right Execute a DAG and view the drift report

Last updated